Example

Determine the Crout factorization of the symmetric tridiagonal matrix

2 -1 0 0
— 1 2 -1 0
0 —1 2 -1
0 0 -1 2

and use this factorization to solve the linear system

2x1 — X2 = 1.
—x1 + 2x0 — 13 = (.,
— x4+ 2x3— x4 =0,

— x3+ 2x4 = 1.



Solution

aq3 :

app app 0 0

a ax axpn 0
0 ax axn ay
0 0 a4y dgg

2=l = 1) =2,

—l=bh = bh=-1,

— 1 =luyy = up3=-—

2=l +Inuy = =

—l=ly = lpn=-1,
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The LU factorization of A has the form
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— 1 =hup = up=-—

— I =l3uyy = uy = —
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2w 2=lp+bhiupy = ln=—3

—l=ln = h=-1,
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This gives the Crout factorization

oives

S nlen— O
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Solving the system
Lz

and then solving




The Crout Factorization Algorithm can be applied whenever [; # 0

This is true for positive definite matrices and also for strictly diagonally

dominant matrices.

Theorem

Suppose that A = [a;;] 1s tridiagonal with a;;_1a;;11 £ 0, foreach1=2,3,....n =L 1f
lan| > lapl, lail = la;;2y| + 1a;;4] foreacht = 2,3,....n = 1, and |a,,| > |a,,—i].
then A 1s nonsingular and the values of [;; described in the Crout Factorization Algorithm

are nonzero foreachir=1.2.....n.

HOMEWORK 9:
Exercise Set 6.6: 13,14



Computational Cost
* The computational cost of LU factorization and Gaussian elimination

method is almost the same (O(n?/3)). The LU factorization is efficient
for several linear systems with the same coefficient matrix.

 The inverse matrix method Is not computationally efficient.

« The LDL' or LL" factorization for positive definite matrices, reduces
the computational cost rather than LU factorization method.

» The computational cost of LL" method is less than LDL' method.

* The Crout factorization for tridiagonal matrices, reduces computational

cost rather than LU factorization method.



Iterative Techniques for Solving Linear Systems

Matrices with high percentage of zero entries (sparse matrices) are often

solved using iterative methods.

Definition

A vector norm on R" is a function, | - ||, from R" into R with the following properties:

|

) x| = 0forallx € R,
(i) |)x|| =01fand only if x =0,
)

(iii) [ox| = |e|l|x] foralle € Randx € R",

(iv) [x+y| < [x] 4[|l forall x.y € R".



Definition

The [, and [, norms for the vector x = (x1,x..... x,)" are defined by
n 1/2
2
Ixll2 = {Zx; ] and [|x/loc = max |xi
The [» norm is called the Euclidean norm of the vector x
X2 A
X2 A
The vectors in R?
with /, norm less 11 (0, 1) (1, 1)
than 1 are inside 0, 1) (=1 D¢ T 1
this figure.
- =X,
(—1,0) (1, 0)
(=1,0) (1, 0)
- X
(-1, —1) 0. -1 @ -1
The vectors in R? with
0, —1) /. norm less than 1 are
' inside this figure.




Example

Determine the /> norm and the l,, norm of the vector x = (—1. 1. =2)".

Solution The vector x = (—1,1,—2)" in B> has norms

Ix]2 =V (=12 + ()2 + (=2)2 =6
and

Ixlloc = max{| — T[.[1].| —2[} = 2.

Distance between Vectors in R”

If x = (x1,x2,....x,) and y = (¥1.¥2.....y,)" are vectors in R", the [,

and [, distancesbetween x and y are defined by

n 1/2
Ix = yll> = IZ(xg - y;)?] and 1x = ylloo = max x; — i
i=1

1<i<nm



Definition

A sequence {x*}?° of vectors in R” is said to converge to x with respect

to the norm || - || if, given any & = 0, there exists an integer N (&) such that

Ix® —x|| <&, forallk > N(e)

Jacobi’'s Method

The Jacobi iterative method is obtained by solving the ith equation in
Ax = b for x; to obtain (provided a; # 0)

I | « _ .
x?”:— E (—a{-j.r.{k ”)—|—b; : fori=1.2.....n
i !

J=1
| JF

x'?) is an initial approximation to x.



Example

The linear system Ax = b given by

Eiy: 10x1— x4+ 2x3 = 0.
Fr: —x;i4+11lx,—  x34 3x4 =25,
Es : 2xi— x4+ 10x3— x4g=-—11.
Ey : 3x0 — x3+8xg =15

has the unique solution x = (1,2, —1, 1)". Use Jacobi’s iterative technique
to find approximations x*) to x starting with x> = (00,0, 0)" until

Hx(.{'} . x“f_”'|

Ix® | oo

* <1077




Solution We first solve equation E; for x;, foreach i = 1.2, 3, 4, to obtain

B ] ] 3
Xl = ﬁ;{'ﬁ — gI} -+ E.
1 n 1 3 n 25
S T TR TR T
] 4 ] n 1 11
X3 = ——X —X —Xy — —,
: T 10" 10
3 n ] i 15
X4 = — —X —X —.
* g2 g7 3
From the initial approximation x> = (0,0, 0, 0)" we have x'" given by
] 1 3
(1) (O0) (0)
.‘:I = EIE — §I3 -+ E = DE}DUG.
| 1 3 25
(1) (0) () () -
e — — S —— — = 2.2727,
*2 ! TR BERAET “
(1) I (0) ] (0) I (D) 11
.TB :—EI] —I—ﬁ.rz ﬁ.r4 _ﬁ :—1]000.
3 | 15
(1) (0) (0)
.r4 = — EIE —I— ng —l— g = 1.8750.



Additional iterates, x*) =

the below table:

(xm ) x0 x¥N are presented in

Xy . Xy

a_

k0 ] 2 3

4 5 6

]

8

9

10

000000 06000 10473 09326
A 00000 22127 L7159 2083

10152 098%  1.0032
19537 20114 19922

:J:;liJH 00000 -1.1000 -08052 -1.0493 -09681 -1.0103 ~—0.9945

00000 18750 08852 11309

09739 10214 0.99%4

0.9981
2.0023

1.0006
1.9987

0.9997
2.0004

~1.0020  -0.9990 -1.0004

1.0036

0.9989

1.0006

1.0001
1.9998
~0.9998
0.9998

We stopped after ten iterations because

||}I”m . 1{9]

e 8.0 % 10~*

x|

1.9998



The Jacobi method can be written as:

In the previous example,

1 1 3
X] = m.l’g — EI} + =
1 . 1 3 +25
X = —X — X1 — — -
T - 1
1 . 1 1 11
X2 —= —— —X Xy — —.
: T 107 10
3 1 15
Xq4 = — E.I'E—F —X3 —|—E
- 1 1 -
0o & -1 0
1 1 3
A 0 A -
T = ”1 ] 1 1” and ¢ =
-5 1 0 1
.0 -5 5 0 _




Suppose that,

S a 0ees
4= Q-.r.ﬂ.zz

e
=D-L-U

dip  dy2 ar
dz1 dx» Aoy
A= , . ,
B tnl an2 Unn _
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. —day -, . :
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[ 0. —ap-:- —ay,
. —lp—1.n
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Ax=bmwp D_L_U)x=0b mp Dx=(L+U)x+b

and. if D! exists. that is. if a;; # 0 for each 1, then

x=D""L+U)x+D'b




This results in the matrix form of the Jacobi iterative technique:

=D ' L+Ux*PY4+D b, k=1,2.....

Introducing the notation 7; = D~ (L + U) and C; = D~ 'b gives

The Gauss-Seidel Method

Ax =b

, ]
MO
aj;

_ Zfauxm} — Z (H,j.rfk ”} + b;

Jj=i+1

I T L |



